제품정보

전 세계 연구자들로부터 품질을 인정받고 있는 TCI는rn오로지 시약 제조만을 100년 이상 지속해온 시약 전문 브랜드입니다.

참고자료 매거진

가이드북 & Key Visual

Biotinylation Reagents with Diazirine and Azide for Photoproximity Labeling

작성자 : 관리자 작성일 : 2024.03.15 11:29




To understand basic biology and develop new treatments for diseases, it is important to identify biological interaction networks, known as interactomes. Proximity labelling, specifically photoproximity labeling, is one of the most effective methods for achieving this.By irradiating light, short-lived reactive active species probes are generated. These probes diffuse through the solution and covalently bind to nearby biomolecules, thus imparting a tag.2,3,4,5,6) For instance, it has been reported that antibodies covalently linked to photoreactive catalysts can label the microenvironment surrounding antibody-bound proteins through activation of probes. This technique does not necessitate the use of genetic modification technology.2)


The labelling radius of the probes used in proximity labeling affects the scale and resolution of the interactome being mapped. We offer commercial products with different labeling radii for proximity labelling.


A diazirine group, which has a singlet carbene as the reactive active species, is extremely reactive to water. Therefore, the labeling time is only a few minutes and the labeling radius is around 50 nm.6) Arylazide groups, in contrast, generate triplet nitrenes as reactive species and exhibit slow reactivity towards water. As a result, the labeling process takes approximately 10 minutes, and a labeling radius of 50-100 nm can be achieved.6,7,8,9)


Additionally, we offer difunctional photoreactive labeling agents that can be photo-crosslinked at the diazirine moiety and have an alkyne moiety as building blocks.



  Biotinylation Reagents   



* 해당 구조식 클릭 시 제품 상세페이지로 이동됩니다.



  Product   

  B6572   Biotin-PEG3-Dz

  B6585   Biotin-PEG3-PhN3

  B6580   Biotin-PEG3-TFPA



  Building Blocks without Biotin Moiety   


* 해당 구조식 클릭 시 제품 상세페이지로 이동됩니다.


  Product   

  N1200   4-Nitrophenyl [2-[3-[(Prop-2-yn-1-yloxy)methyl]-3H-diazirin-3-yl]ethyl] Carbonate

  P2843   2-[3-[(Prop-2-yn-1-yloxy)methyl]-3H-diazirin-3-yl]ethan-1-ol


  Related Products   

  S0966   Streptavidin FITC Conjugate

  T3885   Streptavidin R-PE Conjugate

  F1243   6-FAM-PEG3-Azide

  J0039   JQ-1 Carboxylic Acid

  D5887   NHS-SS-Diazirine (= SDAD)



      Related Product Category Page   

      Photo-reactive Crosslinkers



        Product Brochure  
       


        Reference  
      1) In Vivo Proximity Labeling for the Detection of Protein–Protein and Protein–RNA Interactions
      D. B. Beck, V. Narendra, W. J. Drury 3rd, R. Casey, P. W. Jansen, Z. F. Yuan, B. A. Garcia, M. Vermeulen, R. Bonasio, J. Proteome Res. 2014, 13, 6135.
      2) Microenvironment mapping via Dexter energy transfer on immune cells
      J. B. Geri, J. V. Oakley, T. Reyes-Robles, T. Wang, S. J. McCarver, C. H. White, F. P. Rodriguez-Rivera, D. L. Jr. Parker, E. C. Hett, O. O. Fadeyi, R. C. Oslund, D. W. C. MacMillan, Science 2020, 367, 1091.
      3) Photoproximity Labeling of Sialylated Glycoproteins (GlycoMap) Reveals Sialylation-Dependent Regulation of Ion Transport
      C. F. Meyer, C. P. Seath, S. D. Knutson, W. Lu, J. D. Rabinowitz, D. W. C. MacMillan, J. Am. Chem. Soc. 2022, 144, 23633.
      4) Tracking chromatin state changes using nanoscale photo-proximity labelling
      C. P. Seath, A. J. Burton, X. Sun, G. Lee, R. E. Kleiner, D. W. C. MacMillan, T. W. Muir, Nature 2023, 616, 574.
      5) Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells
      G. B. Thomas, W. W. B. Paul, K. E. Susanna, R. B. James, L. K. Lisa, G. Virginia, K. L. Kevin, A. W. James, ACS Cent. Sci. 2024, 10, 199.
      6) Targeted activation in localized protein environments via deep red photoredox catalysis
      N. E. S. Tay, K. A. Ryu, J. L. Weber, A. K. Olow, D. C. Cabanero, D. R. Reichman, R. C. Oslund, O. O. Fadeyi, T. Rovis, Nat. Chem. 2023, 15, 101.
      7) Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform
      J. V. Oakley, B. F. Buksh, D. F. Fernández, D. G. Oblinsky, C. P. Seath, J. B. Geri, G. D. Scholes, D. W. C. MacMillan, Proc. Natl. Acad. Sci. USA 2022, 119, e2203027119.
      8) Photoaffinity labeling in target- and binding-site identification
      E. Smith, I. Collins, Future Med. Chem. 2015, 7, 159.
      9) Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling
      Y. Xia, L. Peng, Chem. Rev. 2013, 113, 7880.
      10) Labeling Preferences of Diazirines with Protein Biomolecules
      A. V. West, G. Muncipinto, H. Wu, A. C. Huang, M. T. Labenski, L. H. Jones, C. M. Woo, J. Am. Chem. Soc. 2021, 143, 6691.

      첨부파일

      Brochure_LL105_E.pdf